«Я никогда не слушаю никого, кто критикует мои космические путешествия, мои аттракционы или моих горилл. Когда это происходит, я просто упаковываю моих динозавров и выхожу из комнаты» © Рей Бредберри

Самые комментируемые за месяц

Откуда я знаю то, что знаю?

Час назад

Читатель пишет по поводу поста про космологию:

Нет ли у тебя огромного скепсиса по поводу большинства научных изысканий и прогнозов про далекие звезды-галактики-смертьВселенной? Так как все эти прогнозы идут от человечества, не вылетавшего дальше Луны )) Это ведь как прогнозы про смерть загнивающего капитализма от советских провинциальных пропагандистов, имхо

Это очень хороший вопрос. Прежде чем ответить на вопрос про сценарии будущего Вселенной, хочу разобрать более полярные примеры. Почему я доверяю утверждениям про неабсолютность времени, но не доверяю свидетельствам похищения инопланетянами из книги Сагана? Оба утверждения звучат достаточно абсурдно. У обоих есть сторонники со звучными аргументами. Ни там, ни там я свечку не держал. Но про время я согласен, а про инопланетян — нет. Как-то непоследовательно получается...

Разница между этими идеями в том, как они получены и проходят ли критические проверки. Расскажу про это на примерах, а потом вернусь к вопросу про сценарии будущего Вселенной, а в конце расскажу, как я разбираюсь с новыми для меня областями знаний.

Пример с неабсолютностью времени

Вот думали, что время абсолютно, а потом хренакс — и эксперимент показывает, что свет движется во всех системах отсчета с одной скоростью, а значит что-то не так с текущими теориями света, скорости, пространства и времени. Двадцать лет никто не мог объяснить, почему так. Проверяли, перепроверяли — эксперимент надёжен. А потом придумали теорию относительности, которая объясняет этот эксперимент неабсолютностью времени — и всё сошлось. Много очень умных людей проверяли и перепроверяли теорию и ставили экспреименты по ней — работает. Плюс эта теория даёт ещё несколько предсказаний — их тоже проверили и снова всё сошлось.

Идея неабсолютности времени для меня дикая, но множество критически настроенных людей старались найти там нестыковки, и не смогли. Я считаю вероятность реальности этой идеи — 99,999%

Пример со свидетелями похищения инопланетями

Вот всё было спокойно, а потом хренакс — и с 1950-х годов тысячи людей стали заявлять, что их похищали инопланетяне, рассказывать об этом в газетах и на телевидении (преимущественно в США). Вот только при проверках каждого случая не находили никаких следов. Тысячи людей пытались разобраться, докопаться, найти доказательства, собрать картинку по кусочкам с разных сторон. Но в каждом случае те следы, которые всё же находили, лучше объяснялись обычными бытовыми причинами. А сами свидетельства лучше объясняются обманом или галлюцинациями, которые вполне реальны для маленького процента людей, но маленький процент от миллионов — это очень много.

Идея похищений инопланетями эмоционально цепляющая, но проверок критически настроенных людей эти сообщения не проходят. Я считаю вероятность реальности этой идеи — 0,001%.

Пример с прогнозами смерти Вселенной

Теперь посмотрим, откуда берутся прогнозы про будущую смерть Вселенной. На момент 1988 года лучшей догадкой, совпадающей со всеми наблюдениями были 3 сценария: вселенная разлетится совсем, разлетится несовсем или схлопнется из-за гравитации. Потом обнаружили, что дальние звёзды улетают с ускорением — значит на них действует какая-то неизвестная ранее сила, и теперь пытаются выяснить, что это за сила и откуда берётся. Модель сходится с наблюдениями, если добавить в неё «тёмную материю» и «тёмную энергию». Много людей независимо друг от друга повторяли эти расчёты. Много людей строили свои модели, и они давали примерно те же прогнозы. Текущая модель и сценарии — не истина, но «наша лучшая догадка». Насколько я понял, какой именно из трёх базовых сценариев реализуется, пока непонятно. Наверняка прогнозы будущего Вселенной будут уточняться по мере получения новых данных, но вряд ли изменятся кардинально. Если кто-то предложит объяснение и прогноз лучше, то получит Нобелевскую премию :-)

Моя ставка на то, что один из этих — 95%. Это в 5000 раз меньше, чем моя уверенность в неабсолютности времени, но в 100 000 раз больше, чем возможность похищений инопланетянами.

Важно, что любые утверждения можно перепроверить

Пример вымышленного диалога с учёным:
— Почему вы считаете, что Вселенная, скорее всего, разлетится?
— Мы не знаем прям совсем точно, но из нашей модели это выглядит самым вероятным сценарием.
— А почему вы вообще стали строить такую модель?
— Потому что заметили, что удалённые звёзды удаляются от нас с ускорением.
— Почему вы решили, что они так делают?
— Потому что нашли удалённые от нас звёзды, которые светятся слабее, чем должны.
— Эээ...
— Чуть подробнее можно прочитать на Википедии:

Расстояния до других галактик определяются измерением их красного смещения. По закону Хаббла, величина красного смещения света удалённых галактик прямо пропорциональна расстоянию до этих галактик. Соотношение между расстоянием и величиной красного смещения называется параметром Хаббла (или, не совсем точно, постоянной Хаббла).

Однако, само значение параметра Хаббла требуется сначала каким-нибудь способом установить, а для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами. Для этого в астрономии применяются «стандартные свечи», то есть объекты, светимость которых известна. Лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia. Они обладают очень высокой яркостью и вспыхивают только тогда, когда масса старой звезды типа «белый карлик» достигает предела Чандрасекара, значение которого известно с высокой точностью. Следовательно, все вспыхивающие сверхновые типа Ia, находящиеся на одинаковом расстоянии, должны иметь почти одинаковую наблюдаемую яркость; при этом желательно делать поправки на вращение и состав исходной звезды. Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.

— Спасибо я понял. Пойду помолюсь за будущее нашей Вселенной.

Так можно закапываться очень глубоко. К любому утверждению будет внятный ответ на вопрос «с чего вы это взяли?». И все утверждения из этого ответа тоже можно будет проверить. И они будут непротиворечивы.

Как учёные всё это узнают

Чтобы не плодить ложные теории, учёные стараются следовать научному методу:

  • Сначала учёные сталкиваются с какими-то наблюдениями, которые противоречат текущей теории. Обычно противоречия не с основой теории, а с граничными случаями. Наблюдения публикуют, их перепроверяют другие люди, чтобы подтвердить, что проблема есть.
  • Далее они выдвигают гипотезы и теории, которые объясняют имеющиеся наблюдения и предсказывают новые. Теории формулируют так, чтобы их можно было доказать или опровергнуть. Все теории публикуются и кто угодно может с ними ознакомиться.
  • Эти и другие учёные ставят эксперименты и проверяют, какие гипотезы срабатывают, а какие нет. Данные о результатах экспериментов публикуются. Потом эти эксперименты пробуют повторить другие учёные, и тоже публикуют свои результаты. В случае важных теорий все эти результаты проверяют и перепроверяют много очень мотивированных и дотошных людей по многу раз.
  • Если эксперимент поставить нельзя, то строят модели. У моделей есть проверяемые следствия. То есть такие, что если теория верна, то результат один, а если не верна, то другой. Эти следствия много раз проверяют. Общепризнанными становятся те, которые лучше всего объясняют имеющиеся наблюдения и предсказывают новые.
  • Чтобы защититься от когнитивных ошибок людей, эксперименты стараются ставить по двойному слепому методу. Экспериментаторы не знает, что именно будут проверять. Проверяющие не знают, какому случаю соответствуют наблюдения. Если в таких условиях всё сошлось, то выводам можно немножко верить. Если другие группы смогли подтвердить наблюдения, то выводам можно верить больше.

Выводы учёных, полученные такими способами, проходят множественные проверки и постоянно уточняются.

Это не значит, что все утверждения учёных истинны, но по крайней мере это лучшие догадки всего человечества на текущий момент.

Научная картина мира

У научной картины мира есть одно полезное свойство — целостность. Это значит, что разные части сходятся и не противоречат друг другу.

Это полезно, когда вам даже 10 000 человек рассказывают про похищение пришельцами. Вы такой: «Окей, допустим это правда. Как это соотносится со всеми остальными знаниями о мире? А почему таких сообщений не было до 1950-х годов? А почему не остаётся внятных, доступных для исследования следов? А почему ни в одной из 160 стран за 50 лет не было никаких утечек от всех, кто это „скрывает“?»

Не доверяйте тому, что пишут в интернете

Интернет большой, там на любой вопрос будет весь спектр возможных и невозможных объяснений. И получается задача не в том, чтобы оценить этот конкретный текст, а в том, чтобы разобраться в вариантах и выбрать самый близкий к реальности. К каждой статье стоит задавать вопросы: а что конкретно утверждают? Чем подкрепляют? Кто и как проверял? Какие есть альтернативные утверждения? Чем они подкрепляются? Есть ли согласие в научной среде? И оказывается, что чем ближе статья к научной, тем чаще всё сходится, а чем дальше от науки, тем больше там ошибок и противоречий.

Чему доверять

Чтобы разбираться с новой областью, я двигаюсь по такой цепочке:

  1. Самые поверхностные (но более-менее верные) вещи можно найти в Википедии и научно-популярных (не путать с научно-фанастическими) книгах и учебных видео.
  2. Вещи поподробнее и посложнее — в университетских учебниках и курсах.
  3. Ещё более детальные — в старых цитируемых научных статьях.
  4. Самые новые, но менее проверенные — в свежих научных статьях в рецензируемых статьях с высоким рейтингом.

Так можно разобраться с любой темой до уровня эксперта. Правда, занять это может несколько лет. А если нескольких лет на изучение нет, и надо на ходу выбрать, кому доверять, то лучше это будут Википедии, учебники и курсы университетов, или хотя бы те статьи, которые не противоречат известным вам научным данным.

Фотка с телефона по запросу «Учёные»

Этот пост родился из серии постов про «Краткую историю времени» Стивена Хокинга. Вот эта серия:

  1. Эволюция представлений об устройстве Вселенной
  2. Неабсолютное пространство
  3. Неабсолютное время
  4. Взаимодействие света и гравитации
  5. Предельная скорость перемещения в пространстве
  6. Большой взрыв, большое схлопывание и тепловая смерть
  7. Жизненный цикл звёзд и чёрные дыры
  8. Квантовая физика и вероятностный мир

Где купить «Краткую историю времени» Хокинга

— Бумажную — на Озоне, я читал её,
— электронную — на Литресе,
— аудиоверсии пока нет.

Как подписаться на свежие посты

Электронная почта и РСС — туда попадают только посты в блог,
телеграм-канал, фейсбук и твиттер — туда попадают заинтересовавшие меня ссылки с короткими комментариями,
инстаграм — туда иногда выкладываю фотки.

4/8: Взаимодействие света и гравитации

28 июля, 19:35

Продолжаю рассказывать про то, что я вычитал в «Краткой истории времени» Стивена Хокинга. Это четвёртая часть рассказа.

В Ньютоновской механике получается, что гравитация действует мгновенно и на любом расстоянии: если сдвинуть один объект, то сила, действующая на второй изменится мгновенно. Но тогда получается, что один объект действует на другой со скоростью выше скорости света, а это противоречит принципу инвариантности законов природы относительно любой системы отсчёта.

Общая теория относительности

В 1915 году Эйнштейн предложил общую теорию относительности. Он предположил, что гравитация — это не обычная сила, а следствие того, что пространство-время не является плоским, как считалось ранее. Оно искривляется распределёнными в нём массой и энергией. Такие тела, как Земля, не принуждаются двигаться по искривлённым орбитам гравитационной силой; они движутся по линиям, которые в искривлённом пространстве более всего соответствуют прямым в четырёхмерном пространстве-времени. То есть масса Солнца так искривляет пространство-время, что, хотя в четырёхмерном пространстве Земля движется по прямой, в нашем трёхмерном пространстве она движется по круговой орбите.

Теория Эйнштейна предсказывала траектории планет почти как по теории Ньютона, но не совсем. Более точные измерения показали верность теории Эйнштейна.

Масса отклоняет траекторию света

С точки зрения физиков того времени гравитация вообще не должна влиять на свет. Гравитация — это сила, пропорциональная массам объектов, а у света нет массы. Общая теория относительности предсказывала, что тяжёлые объекты, типа Солнца, должны отклонять свет от звёзд, проходящих близко к нему. В обычных условиях Солнце ярко светит и разглядеть за ним звёзды не получается, но во время солнечного затмения этот эффект должен быть виден. В итоге эксперименты это подтвердили.

Масса искажает течение времени

Общая теория относительности предсказывала, что вблизи массивных объектов, типа Земли время должно течь медленнее, чем на орбите. Это следует из того, что должно соблюдаться определённое соотношение между энергией света и его частотой (то есть числом световых волн в секунду): чем больше энергия, тем выше частота. Если свет распространяется вверх по гравитационному полю Земли, то он теряет энергию, а потому его частота уменьшается. (То есть увеличивается интервал между гребнями двух соседних волн). Наблюдателю на большой высоте должно казаться, что внизу всё происходит чуть-чуть медленее.

В 1962 году это было проверено экспериментально. А сейчас это становится важно при работе геопозиционирования по сигналам со спутников GPS и Глонасс. Если не делать поправки на эффекты теории относительности, то координаты будут рассчитаны с ошибкой в несколько километров.

Я даже могу представить себя на месте программиста чипа GPS в смартфоне, который проклинает Эйнштейна с его теорией относительности, из-за которых у него координаты глючат :-)

Фотка с телефона по запросу четырёхмерное пространство-время

Все части серии

  1. Эволюция представлений об устройстве Вселенной
  2. Неабсолютное пространство
  3. Неабсолютное время
  4. Взаимодействие света и гравитации
  5. Предельная скорость перемещения в пространстве
  6. Большой взрыв, большое схлопывание и тепловая смерть
  7. Жизненный цикл звёзд и чёрные дыры
  8. Квантовая физика и вероятностный мир

Где купить книгу

— Бумажную — на Озоне, я читал её,
— электронную — на Литресе,
— аудиоверсии пока нет.

Как получать свежие посты

Электронная почта и РСС — туда попадают только посты в блог,
телеграм-канал, фейсбук и твиттер — туда попадают заинтересовавшие меня ссылки с короткими комментариями,
инстаграм — туда иногда выкладываю фотки.

8/8: Квантовая физика и вероятностный мир

12 августа, 19:00

Продолжаю рассказывать про то, что я вычитал в «Краткой истории времени» Стивена Хокинга. Это восьмая и последняя часть рассказа.

Интерференция электрона с самим собой

В 1920-х годах в лаборатории Белла ставили эксперименты с потоками электронов и получили странные результаты. Электроны вели себя то как частицы, то как волны, то как чёрт знает что.

Фотка с телефона по запросу «чёрт знает что»

Сейчас попробую рассказать по шагам.

Шаг 1. Берём поток электронов и направляем его на экран, фиксирующий прилетевшие электроны. Ставим между источником электронов и экраном пластину с вертикальной щелью. Большая часть электронов попадает на пластину, но некоторые пролетают через вертикальную щель и попадают на экран. Точки на экране образуют вертикальную полосу, примерно повторяя форму щели. Всё логично. Именно такого поведения мы ожидаем от частиц.

Шаг 2. Теперь заменим пластину на такую же, но не с одной, а с двумя вертикальными щелями. Направляем через них тот же поток электронов и ожидаем увидеть на экране две полосы точек вдоль этих щелей. Но вместо этого видим «интерфереционную картину». Электроны разлетелись по всему экрану, но при этом кучкуются такими «волнами» — то их больше, то меньше. Это странно, частицы так себя не ведут! Зато так себя ведут волны. Они проходят через две щели, разбегаются во все стороны от них и накладываются друг на друга. В точках, где фазы волн совпадают, получается получается то двойная волна. А если оказываются в противофазе, то полностью гасят друг друга. Поэтому когда волны доходят до экрана мы и видим «волны» — то точек сильно больше, то сильно меньше.

Сергей Второв сделал модель, в которой можно поиграться с длинной волны, размером и расстоянием между щелями и расстоянием до экрана. По ссылке модель для эксперимента со светом, но в эксперименте получалось, что электроны ведут себя аналогично.

Вот как это выглядит на практике:

Запись с детектора электронов, чтобы посмотреть своими глазами.

Такой эффект можно объяснить так: у нас летит много-много электронов-волн, эти волны накладываются друг на друга и в одних местах усиливают друг друга, а в других гасят. Так получается интерференционная картина на экране, где точек то больше, то меньше. А что если стрелять электронами по одному с интервалом раз в секунду? Тогда электроны не будут влиять друг на друга.

Шаг 3. Находим установку и стреляем электронами по одному. Возвращаемся через полчаса — и видим на экране ту же интерфереционную картину. Что за фигня? Получается, что электрон-волна как будто одновременно проходит через обе щели, сам с собой интерферирует и в итоге оказывается с некоторыми вероятностями в разных точках экрана. Распределение вероятностей оказаться в разных точка экрана идёт волной и поэтому после запуска большого числа электронов мы и видим эти точки на экране волнами. WAT?

Может быть будет понятнее, если посмотреть объясняющее видео с иллюстрациями:

Видео на 7 минут на русском.

Видео на 8 минут на английском + в конце бонус про влияние наблюдателя на эксперимент. Штуки про наблюдателя выходят за рамки этого поста, но очень интригуют.

Если я правильно понял, то Ричард Фейнман предложил смотреть на это так: частица одновременно проходит по всем возможным траекториям. У каждой траектории своя вероятность завершиться в конкретной точке. Чтобы понять, окажется ли электрон в конкретной точке, надо просуммировать вероятности по всем его возможным траекториям. Этот метод так и называется — «суммирование про траекториям». Рассчитать, в какую именно точку улетит конкретная частица, нельзя — но можно построить карту вероятностей для всех точек, куда она может улететь. Если запустить много-много частиц, то распределение точек совпадёт с рассчитанными вероятностями. Вот такой вероятностный мир.

Почему электроны не падают на ядра?

Раньше считалось, что электроны летают вокруг атомов как маленькие электроны-планетки вокруг маленьких ядер-звёзд. Но было непонятно, почему они не теряют потихоньку энергию, не падают на ядра и не происходит коллапс всей материи во Вселенной. В 1913 году Нильс Бор постулировал, что электроны могут занимать только определённые траектории и переходить между ними с получением/испусканием энергии. Почему так — было непонятно, но такой постулат лучше всего согласовывался с наблюдениями. Всё-таки, электроны не падали на ядра.

Объяснение этому эффекту дал Фейнман с его идеей суммирования по траекториям. Когда электрон-волна летит вокруг ядра, то вдоль некоторых орбит укладывается целое (а не дробное) число длин волн электрона. При движении по этим орбитам гребни волн окажутся в одном и том же месте на каждом витке, и поэтому такие волны складываются; такие орбиты относятся к боровским разрешённым орбитам. А для тех орбит, вдоль которых не укладывается целое число длин волн электрона, каждый гребень по мере обращения электронов рано или поздно скомпенсируется впадиной; такие орбиты не будут разрешёнными. Суммирование по траекториям показывает, что обнаружить электрон на разрешённой орбите можно с высокой вероятностью, а на неразрешённой — с нулевой. И всё сразу становится понятно, правда? :-)

Принцип неопределённости и фундаментальное представление о реальности

Принцип неопределённости Гейзенберга говорит, что невозможно определить положение и импульс частицы точнее определённого предела. Чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую. Насколько я понял, это связано даже не с тем, что само измерение влияет на частицу, а с самой её природой. Так как она немножко волна, то положение у неё слегка размазанное. Но дело там тёмное, и мне самому интересно получше с этим разобраться.

С этим связан вопрос о фундаментальной определённости (или неопределённости) мира. Эйнштейн говорил, что измерить положение, скорость и другие параметры частиц мы супер-точно не можем, но у частиц они изначально есть. Это было бы логично. А Нильс Бор предположил, что их и изначально нет. Что параметры проявляются, только когда мы их измеряем, то есть как-то взаимодействуем с частицей. Эта безумная на первый взгляд мысль рождается из экспериментов с электронами. В примере с электроном, летящем через две щели сразу, получается, что у него вообще нет какого-либо внятного положения в пространстве, пока его где-нибудь не остановят.

Мне всё это кажется очень странным. Как это у частицы нет определённых параметров до измерения? Но в 1964 году Джон Белл придумал эксперимент, результат которого различался, если эти параметры и правда изначально не определены. А через двадцать лет его смогли провести и узнать результат. Круто про это написал Sly2m на Dirty: раз, два, три. После них я чуть-чуть начал понимать изначальный вопрос, способы экспериментальной проверки и пугавшее Эйнштейна «жуткое дальнодействие».

Все части серии

  1. Эволюция представлений об устройстве Вселенной
  2. Неабсолютное пространство
  3. Неабсолютное время
  4. Взаимодействие света и гравитации
  5. Предельная скорость перемещения в пространстве
  6. Большой взрыв, большое схлопывание и тепловая смерть
  7. Жизненный цикл звёзд и чёрные дыры
  8. Квантовая физика и вероятностный мир

Где купить «Краткую историю времени» Хокинга

— Бумажную — на Озоне, я читал её,
— электронную — на Литресе,
— аудиоверсии пока нет.

Как получать свежие посты

Электронная почта и РСС — туда попадают только посты в блог,
телеграм-канал, фейсбук и твиттер — туда попадают заинтересовавшие меня ссылки с короткими комментариями,
инстаграм — туда иногда выкладываю фотки.